

149

Part III: Programming in Lisp

“The name of the song is called ‘Haddocks’ Eyes.’ “

“Oh, that’s the name of the song, is it?” Alice said, trying to feel interested.

“No, you don’t understand,” the Knight said, looking a little vexed. “That’s what the name is called. The
name really is ‘The Aged Aged Man.’ “

“Then I ought to have said ‘That’s what the song is called’?” Alice corrected herself.

“No, you oughtn’t: that’s quite another thing! The song is called ‘Ways and Means’: but that’s only what
it’s called you know!”

“Well, what is the song, then?” said Alice, who was by this time completely bewildered.

“I was coming to that,” the Knight said.

—Lewis Carroll, Through the Looking Glass

 For the almost fifty years of its existence, Lisp has been an important

language for artificial intelligence programming. Originally designed for
symbolic computing, Lisp has been extended and refined over its lifetime
in direct response to the needs of AI applications. Lisp is an imperative
language: Lisp programs describe how to perform an algorithm. This
contrasts with declarative languages such as Prolog, whose programs are
assertions that define relationships and constraints in a problem domain.
However, unlike traditional imperative languages, such as FORTRAN,
C++ or Java, Lisp is functional: its syntax and semantics are derived from
the mathematical theory of recursive functions.

The power of functional programming, combined with a rich set of high-
level tools for building symbolic data structures such as predicates, frames,
networks, rules, and objects, is responsible for Lisp’s popularity in the AI
community. Lisp is widely used as a language for implementing AI tools
and models, particularly in the research community, where its high-level
functionality and rich development environment make it an ideal language
for building and testing prototype systems.

In Part III, we introduce the syntax and semantics of Common Lisp, with
particular emphasis on the features of the language that make it useful for
AI programming: the use of lists to create symbolic data structures, and the
implementation of interpreters and search algorithms to manipulate these
structures. Examples of Lisp programs that we develop in Part III include
search engines, pattern matchers, theorem provers, rule-based expert
system shells, semantic networks, algorithms for learning, and object-
oriented simulations. It is not our goal to provide a complete introduction
to Lisp; a number of excellent texts (see the epilogue Chapter 20) do this in

150 Part III: Introduction

far greater detail than our space allows. Instead, we focus on using Lisp to
implement the representation languages and algorithms of artificial
intelligence programming.

In Chapter 11 we introduce symbol expressions, usually termed s-expressions,
the syntactic basis for the Lisp language. In Chapter 12, we present lists,
and demonstrate recursion as a natural tool for exploring list structures.
Chapter 13 presents variables in Lisp and discusses bindings, and scope
using Lisp forms including set and let. We then present abstract data
types in Lisp and end the chapter with a production system implementing
depth-first search.

Chapter 14 presents functions for building meta-interpreters, including the
map, filter, and lambda forms. These functions are then used for
building search algorithms in Lisp. As in Prolog, open and closed lists are
used to design depth-first, breadth-first, and best-first search algorithms.
These search algorithms are designed around the production system
pattern and are in many ways similar to the Prolog search algorithms of
Chapter 4.

Chapter 15 creates a unification algorithm in Lisp in preparation for, in
Chapter 16, logic programming in Lisp. This unification, or general pattern
matching algorithm, supports the design of a read-eval-print loop
that implements embedded interpreters. In Chapter 16 we present a full
interpreter for expressions in a restricted form of the predicate calculus.
This, in turn, sets up the full expert system shell of Chapter 17.

Chapter 17 first presents streams and delayed evaluation as a lead in to
presenting lisp-shell, a general-purpose expert system shell in Lisp
for problems represented in the predicate calculus. lisp-shell requires
that the facts and rules of the problem domain to be translated into a
pseudo Horn clause form.

In Chapter 18 we present object-oriented structures built in Lisp. We see
the language as implementing the three components of object-oriented
design: inheritance, encapsulation, and polymorphism. We see this
implemented first in semantic networks and then in the full object system
using the CLOS (Common Lisp Object System) library. We use CLOS to
build a simulation of a heating system for a building.

In Chapter 19 we explore machine learning in Lisp building the full ID3
algorithm and testing it with a “consumer credit” example. Chapter 20
concludes Part III with a discussion of functional programming and a
reference list.

